
Homework 4 Solutions
Math 131B-2

• (4.19) Let x0 ∈ [a, b]. We claim that g is continuous at x0. Let ε > 0, then there is some
δ > 0 such that if |x− x0| < δ, |f(x)− f(x0)| < ε. Now suppose that x ∈ (x0, x0 + δ).
Then g(x) = max{f(y) : y ∈ [a, x]} = max{max{f(y) : y ∈ [a, x0]},max{f(y) : y ∈
[x0, x]}} is either f(x0) (if max{f(y) : y ∈ [a, x0]} is the larger of the two maxima)
or is equal to f(y) for some y ∈ [x0, x], and thus has value within ε of f(x0), since
|y − x0| < δ. We conclude that |g(x)− g(x0)| < ε. Similar considerations apply when
x ∈ (x0− δ, x0), so we see that when |x− x0| < δ, we must have |g(x)− g(x0)| < ε. So
g is continuous at x0; since x0 was arbitrary, g is continuous on [a, b].

• (4.21) Let f : S → R be continuous, and f(p) > 0. Let ε = f(p)
2

, and choose δ such
that x ∈ B(p; δ) implies f(x) ∈ B(f(p); ε), or equivalently that |f(p) − f(x)| < ε. In

particular f(p)− f(x) < ε, implying that −f(x) < −f(p) + f(p)
2

, i.e. f(x) > f(p)
2
> 0.

Hence f is nonzero on B(f(p); ε).

• (4.25) Assume wlog that x1 < x2. Since f is continuous on [x1, x2], it achieves a mini-
mum somewhere on [x1, x2]. If this minimum is on (x1, x2) it is a local minimum and
we are done. Suppose that f achieves its minimum at x1. Then because x1 is a local
maximum, there is some neighborhood [x1, x1 + ε) ⊂ [x1, x2] such that f(x) ≥ f(x1)
for all x ∈ [x1, x1 + ε). Since f(x1) is a minimum, this implies that f is constant on
[x1, x1 + ε). Ergo we have a local minimum at x1 + ε

2
∈ (x1, x2) because the function

is constant on the ε
2

neighborhood (x1, x1 + ε) about x1 + ε
2
. The case when f takes

its minimum at x2 is similar.

• (4.33) Consider f(x) = 1
x

on (0,∞) and the Cauchy sequence { 1
n
}. Then {f( 1

n
)} = {n},

so f( 1
n
)→∞ and in particular is not Cauchy.

• (4.30) First suppose f is continuous on S. If A is a subset of S and x ∈ A, there is a
sequence of points {xn} in A converging to A. Then {f(xn)} is a sequence of points
in f(A) converging to f(x) by continuity, so f(x) ∈ f(A). Therefore f(A) ⊂ f(A).
Conversely, suppose we know that f(A) ⊂ f(A) for all A ⊂ S. Let C be any closed
set in T , and let A = f−1(C). Then f(A) ⊆ f(A), but f(A) ⊆ C, so f(A) ⊆ C = C
since C is closed. Ergo we see that f(A) ⊆ C. But this implies that A ⊆ f−1(C) = A.
So since A contains its own closure, A is closed. Hence the preimage of any closed set
in T under f is closed, implying that f is continuous.

As an example of when this inclusion is not an equality, consider f(x) = tan−1(x),
which takes the closed set A = [1,∞) to f(A) = [π

4
, π
2
). Then f(A) = f(A) ⊂ [π

4
, π
2
] =

f(A).



• Question 4.

– Suppose S is a dense subset of M . Then for m ∈M , we consider the neighborhood
B(m; 1

n
). Because this neighborhood is an open set, we can find sn ∈ S∩B(m; 1

n
).

This {sn} is a sequence of points in S converging to m.

– Suppose f, g : M → T are two continuous functions which agree on S. For any
m ∈M , choose a sequence {sn} of points in S convergin to m. Then by continuity,
lim f(sn) = f(m) and lim g(sn) = g(m). But {f(sn)} and {g(sn)} are the same
sequence, so in fact f(m) = g(m) for all m.

• Question 5. Recall, from e.g. the sample midterm, that a sequence in Rn con-
verges if and only if its component sequences each converge in R. It follows imme-
diately from our characterization of continuity in terms of sequence convergence that
f(x) = (f1(x), · · · , fn(x)) is continuous if and only if each fi is continuous.

• Question 6. Yes, the country including its borders, viewed as a subset of the plane, is
compact, and the elevation of its surface is a continuous function, so we conclude that
by the extreme value theorem, there is some location in the country with elevation
exactly seven thousand feet above sea level. I look forward to reading your other
examples!


