Homework 4 Solutions

Math 131B-2

- (4.19) Let $x_{0} \in[a, b]$. We claim that g is continuous at x_{0}. Let $\epsilon>0$, then there is some $\delta>0$ such that if $\left|x-x_{0}\right|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Now suppose that $x \in\left(x_{0}, x_{0}+\delta\right)$. Then $g(x)=\max \{f(y): y \in[a, x]\}=\max \left\{\max \left\{f(y): y \in\left[a, x_{0}\right]\right\}, \max \{f(y): y \in\right.$ $\left.\left.\left[x_{0}, x\right]\right\}\right\}$ is either $f\left(x_{0}\right)$ (if $\max \left\{f(y): y \in\left[a, x_{0}\right]\right\}$ is the larger of the two maxima) or is equal to $f(y)$ for some $y \in\left[x_{0}, x\right]$, and thus has value within ϵ of $f\left(x_{0}\right)$, since $\left|y-x_{0}\right|<\delta$. We conclude that $\left|g(x)-g\left(x_{0}\right)\right|<\epsilon$. Similar considerations apply when $x \in\left(x_{0}-\delta, x_{0}\right)$, so we see that when $\left|x-x_{0}\right|<\delta$, we must have $\left|g(x)-g\left(x_{0}\right)\right|<\epsilon$. So g is continuous at x_{0}; since x_{0} was arbitrary, g is continuous on $[a, b]$.
- (4.21) Let $f: S \rightarrow \mathbb{R}$ be continuous, and $f(p)>0$. Let $\epsilon=\frac{f(p)}{2}$, and choose δ such that $x \in B(p ; \delta)$ implies $f(x) \in B(f(p) ; \epsilon)$, or equivalently that $|f(p)-f(x)|<\epsilon$. In particular $f(p)-f(x)<\epsilon$, implying that $-f(x)<-f(p)+\frac{f(p)}{2}$, i.e. $f(x)>\frac{f(p)}{2}>0$. Hence f is nonzero on $B(f(p) ; \epsilon)$.
- (4.25) Assume wlog that $x_{1}<x_{2}$. Since f is continuous on $\left[x_{1}, x_{2}\right]$, it achieves a minimum somewhere on $\left[x_{1}, x_{2}\right]$. If this minimum is on $\left(x_{1}, x_{2}\right)$ it is a local minimum and we are done. Suppose that f achieves its minimum at x_{1}. Then because x_{1} is a local maximum, there is some neighborhood $\left[x_{1}, x_{1}+\epsilon\right) \subset\left[x_{1}, x_{2}\right]$ such that $f(x) \geq f\left(x_{1}\right)$ for all $x \in\left[x_{1}, x_{1}+\epsilon\right.$). Since $f\left(x_{1}\right)$ is a minimum, this implies that f is constant on $\left[x_{1}, x_{1}+\epsilon\right)$. Ergo we have a local minimum at $x_{1}+\frac{\epsilon}{2} \in\left(x_{1}, x_{2}\right)$ because the function is constant on the $\frac{\epsilon}{2}$ neighborhood $\left(x_{1}, x_{1}+\epsilon\right)$ about $x_{1}+\frac{\epsilon}{2}$. The case when f takes its minimum at x_{2} is similar.
- (4.33) Consider $f(x)=\frac{1}{x}$ on $(0, \infty)$ and the Cauchy sequence $\left\{\frac{1}{n}\right\}$. Then $\left\{f\left(\frac{1}{n}\right)\right\}=\{n\}$, so $f\left(\frac{1}{n}\right) \rightarrow \infty$ and in particular is not Cauchy.
- (4.30) First suppose f is continuous on S. If A is a subset of S and $x \in \bar{A}$, there is a sequence of points $\left\{x_{n}\right\}$ in A converging to A. Then $\left\{f\left(x_{n}\right)\right\}$ is a sequence of points in $f(A)$ converging to $f(x)$ by continuity, so $f(x) \in \overline{f(A)}$. Therefore $f(\bar{A}) \subset \overline{f(A)}$. Conversely, suppose we know that $f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset S$. Let C be any closed set in T, and let $A=f^{-1}(C)$. Then $f(\bar{A}) \subseteq \overline{f(A)}$, but $f(A) \subseteq C$, so $\overline{f(A)} \subseteq \bar{C}=C$ since C is closed. Ergo we see that $f(\bar{A}) \subseteq C$. But this implies that $\bar{A} \subseteq f^{-1}(C)=A$. So since A contains its own closure, A is closed. Hence the preimage of any closed set in T under f is closed, implying that f is continuous.

As an example of when this inclusion is not an equality, consider $f(x)=\tan ^{-1}(x)$, $\underline{\text { which takes the closed set } A=[1, \infty) \text { to } f(A)=\left[\frac{\pi}{4}, \frac{\pi}{2}\right) \text {. Then } f(\bar{A})=f(A) \subset\left[\frac{\pi}{4}, \frac{\pi}{2}\right]=}$ $\overline{f(A)}$.

- Question 4.
- Suppose S is a dense subset of M. Then for $m \in M$, we consider the neighborhood $B\left(m ; \frac{1}{n}\right)$. Because this neighborhood is an open set, we can find $s_{n} \in S \cap B\left(m ; \frac{1}{n}\right)$. This $\left\{s_{n}\right\}$ is a sequence of points in S converging to m.
- Suppose $f, g: M \rightarrow T$ are two continuous functions which agree on S. For any $m \in M$, choose a sequence $\left\{s_{n}\right\}$ of points in S convergin to m. Then by continuity, $\lim f\left(s_{n}\right)=f(m)$ and $\lim g\left(s_{n}\right)=g(m)$. But $\left\{f\left(s_{n}\right)\right\}$ and $\left\{g\left(s_{n}\right)\right\}$ are the same sequence, so in fact $f(m)=g(m)$ for all m.
- Question 5. Recall, from e.g. the sample midterm, that a sequence in \mathbb{R}^{n} converges if and only if its component sequences each converge in \mathbb{R}. It follows immediately from our characterization of continuity in terms of sequence convergence that $f(x)=\left(f_{1}(x), \cdots, f_{n}(x)\right)$ is continuous if and only if each f_{i} is continuous.
- Question 6. Yes, the country including its borders, viewed as a subset of the plane, is compact, and the elevation of its surface is a continuous function, so we conclude that by the extreme value theorem, there is some location in the country with elevation exactly seven thousand feet above sea level. I look forward to reading your other examples!

